
1 SIR model and proposed branching approximation

The general stochastic epidemic model with infection rate β and recovery rate γ has
infinitesimal transition probabilities as h → 0

Pr(S(t + h) = xh, I(t + h) = yh|S(t) = xt, I(t) = yt)

=

βxtyth + o(h) if (xh, yh) = (xt − 1, yt + 1)
γyth + o(h) if (xh, yh) = (xt, yt − 1)
1 − (βxtyt + γyt)h + o(h) if (xh, yh) = (xt, yt)

We see the interaction effect between susceptible and infected populations explicitly due
to the xy product appearing in the probabilities above. Because new infections occur at
rate βxtyt and recoveries occur with rate γyt, it suffices to restrict attention to the S(t), I(t)
populations. While branching processes fundamentally rely on particle independence, we
can nonetheless make a very good approximation by mimicking the interaction effect
over short time intervals. We propose a two-type branching process, where X1 will rep-
resent the susceptible population and X2 denotes the infected population. Over any time
interval [t0, t1), we use the initial population X2(0) as a constant scaling the instantaneous
rates. The only nonzero rates specifying the proposed model are

a1(0, 1) = βX2(0), a1(1, 0) = −βX2(0), a2(0, 1) = −γ, a2(0, 0) = γ. (1)

This notation corresponds to what we used for the birth-death-shift process: each type i
particle produces k type 1 particles and l type 2 particles with instantaneous rates aj(k, l)
upon completion of its lifespan.

This very simple branching process is easy to analyze, and has infection rate βX2(0)X1(t)
and recovery rate γX2(t) for all t ∈ [t0, t1), closely resembling the true model rates, with
the exception of fixing X2(0) in place of X2(t) in the rate of infection. This constant initial
population fixes a piecewise homogeneous per-particle birth rate to mimic interactions,
but notice that both populations can change over the interval, and thus by linearity the
overall rates change as well. While still an approximation, this offers much more flex-
ibility than models such as TSIR that assume constant populations and rates between
discrete observations.

When such a model is appropriate, its simplicity and flexibility provide attractive
mathematical properties toward many statistical methods. In particular, repeated deriva-
tives of the probability generating function corresponding to this process surprisingly
have closed form solutions that can be evaluated quickly and accurately. This enables us
to directly compute transition probabilities given any fixed endpoints, so that probability
generating function evaluations and spectral techniques are not necessary.

The transition probabilities of the two-type branching approximation to the SIR model
defined by (1) over any time interval of length t are given by

Pr {X(t + s) = (k, l)|X(s) = (m, n)} := Pmn,kl(t) =
l

∑
i=0

A(l − i)B(i), where

1

B(i) = 0, ∀i ≤ n; otherwise,
B(i) = n!

(n−i)! (1 − e−γt)n−ie−iγt.

A(l − i) = 0, ∀(l − i) ≤ (m − k); otherwise,

A(l − i) = m!
(m−k−l−i)! e

−kβnt
[
1 − βn

βn−γ e−γt −
(

1 − βn
βn−γ

)
e−βnt

]m−k−l−i [βn
βn−γ (e

−γt − e−βnt)
]l−i

.

The formula as a sum over products of these expressions above may look unwieldy, but
can be computed very quickly in practice with a vectorized implementation, and with
high degrees of numerical stability even when very large factorials are necessary by using
Loader’s algorithm (this is used for pbinom in R).

2 R code

Below, I’ll walk through some example code that implements the above formula. I’ve
included R code that solves the ODEs using the same method as the birth-death-shift
transposon paper, since we’ve seen that method works, for purposes of comparing accu-
racy — in practice, the point of closed form solutions is that we won’t have to evaluate a
whole grid of solutions.

First, we have the relatively simple ODE solutions, and code to evaluate them over
a grid of arguments (naively with nested for loops) and functions to take the Fourier
transforms of these grids, yielding transition probabilities.

library(matrixStats)

solutions to phi1 and phi2, the generating function ODES

phi1 is generating function starting with 1 suscep

phi2 is starting with 1 infected

phi1 <- function(t, s1, s2, beta, gam, I0){

return(1 + exp(-gam*t)*beta*I0*(s2-1)/(beta*I0-gam) +

exp(-beta*I0*t)*(s1 - 1 - beta*I0*(s2-1)/(beta*I0-gam)))

}

phi2 <- function(t, s2, gam){

return(1 + (s2-1)*exp(-gam*t))

}

#solve over a grid: s1.seq and s2.seq will be vectors of complex numbers

#along unit circle

phi1.grid <- function(t, s1.seq, s2.seq, beta, gam, I0) {

#this will store the grid

grid <- matrix(nrow = length(s1.seq), ncol = length(s2.seq))

for(i in 1:length(s1.seq)){

for(j in 1:length(s2.seq)){

grid[i,j] <- phi1(t, s1.seq[i], s2.seq[j], beta, gam, I0)

}

2

}

return(grid)

}

phi2.grid <- function(t, s2.seq, gam){

#this will store the grid

grid <- matrix(nrow = length(s2.seq), ncol = length(s2.seq))

for(j in 1:length(s2.seq)){

grid[,j] <- phi2(t, s2.seq[j], gam) #columns will be constant

}

return(grid)

}

#exponentiate grid solutions appropriately and fast fourier transform

#to get trans probs

getTransProbsODE <- function(t, gridLength, beta, gam, S0, I0){

s1.seq <- exp(2*pi*1i*seq(from = 0, to = (gridLength-1))/gridLength)

s2.seq <- exp(2*pi*1i*seq(from = 0, to = (gridLength-1))/gridLength)

jointGrid <- phi1.grid(t, s1.seq, s2.seq, beta, gam, I0)^S0 *

phi2.grid(t, s2.seq, gam)^I0

fourierGrid <- fft(jointGrid)/length(jointGrid)

return(Re(fourierGrid))

}

We can use these as a “ground truth" for transition probabilities of the approximate
branching model to test our closed form probabilities, implemented below. For the paper,
we will probably only include the more relevant comparison to Monte Carlo estimates
from simulating the true SIR process.

expression for the phi1 cross-partials

A <- function(t, m, n, k, j, beta, gam){

if(j > m-k){return(0)} else{

return(factorial(m) * exp(-k*beta*n*t) *

(1 - beta*n*exp(-gam*t)/(beta*n-gam) - exp(-beta*n*t) *

(1 - beta*n/(beta*n-gam)))^(m-k-j) *

(beta*n*(exp(-gam*t) - exp(-beta*n*t)) /

(beta*n - gam))^(j) / factorial(m-k-j))

}

}

expression for the phi2 partials

B <- function(t, n, j, gam){

if(j>n){return(0)} else{

return(factorial(n)* (1-exp(-gam*t))^(n-j) *

3

exp(-gam*j*t)/factorial(n-j))

}

}

remove if statements from A(), B(), so that vector arguments work

input j must be greater than m-k

A.vectorized <- function(t, m, n, k, j, beta, gam){

return(factorial(m) * exp(-k*beta*n*t) *

(1 - beta*n*exp(-gam*t)/(beta*n-gam) - exp(-beta*n*t) *

(1 - beta*n/(beta*n-gam)))^(m-k-j) *

(beta*n*(exp(-gam*t) - exp(-beta*n*t)) /

(beta*n - gam))^(j) / factorial(m-k-j))

}

#log version of previous, to handle larger numbers

A.vec.log <- function(t, m, n, k, j, beta, gam){

return(lgamma(m+1) - lgamma(m-k-j+1) - (k*beta*n*t) +

(m-k-j)* log((1 - beta*n*exp(-gam*t)/(beta*n-gam) -

exp(-beta*n*t) *

(1 - beta*n/(beta*n-gam))))

+ j * log((beta*n*(exp(-gam*t) - exp(-beta*n*t)) /

(beta*n - gam)))

)

}

B.vectorized <- function(t, n, j, gam){

return(factorial(n)* (1-exp(-gam*t))^(n-j) * exp(-gam*j*t) /

factorial(n-j))

}

B.vec.log <- function(t, n, j, gam){

return(lgamma(n+1) - lgamma(n-j+1) + (n-j)*log(1 - exp(-gam*t))

- gam*j*t)

}

loops over appropriate indices in a Leibniz-rule sum

for partial derivative solution.

uses expressions A(), B(), and returns P_{(m,n),(k,l)}(t) given

beta and gamma.

slow version with for loop: included here since it's more transparent

to read

TransProb_mnkl_old <- function(t, m, n, k, l, beta, gam){

AA <- BB <- rep(0,l+1)

c <- choose(l,seq(0,l))

4

for(i in 1:(l+1)){

AA[i] <- A(t, m, n, k, l-i+1, beta, gam)

BB[i] <- B(t, n, i-1, gam)

}

print(AA)

print(BB)

return(sum(AA*BB* c) / (factorial(k)*factorial(l)))

}

note: of course k can never be greater than m

uses log versions to handle large populations

put k and l first for use with outer()

TransProb_mnkl <- function(k,l, t, m, n, beta, gam){

if(k>m){return(0)}

logAA <- logBB <- rep(0,l+1)

aj <- rev(seq(0,min(m-k,l)))

bj <- seq(0, min(n,l))

c <- lgamma(l+1) - lgamma(seq(0,l) + 1) - lgamma(l+1 - seq(0,l))

logAA[(l+1-min(m-k,l)):(l+1)] <- A.vec.log(t, m, n, k, aj, beta, gam)

logBB[1: (min(n,l)+1)] <- B.vec.log(t, n, bj, gam)

print(AA)

print(BB)

print(c)

term <- c + logAA + logBB

return(exp(logSumExp(term) - lgamma(k+1) - lgamma(l+1)))

}

#vectorize the previous for use with outer

vectorized <- Vectorize(TransProb_mnkl, vectorize.args = c('k','l'))

S_0, I_0 are m,n: fixes those and returns a grid of transitions

over different end states for comparison with getTransProbs()

#vectorized version

getTransProbsClosed <- function(t, gridLength, beta, gam, S0, I0){

return(outer(0:gridLength, 0:gridLength, vectorized,

t = t, beta = beta, gam = gam, m = S0, n = I0))

}

simple simulation of true SIR model over a time interval

simulateSIR <- function(t.end, S, I, beta, gam, maxEvents = 99999999){

t.cur <- 0

for(i in 1:maxEvents){

if(S<0 || I <0){

print("Negative population? Error")

5

return(-99) #error code

}

if(S == 0 || I ==0){

#print("S or I is zero, end epidemic")

return(c(S,I)) #end epidemic

}

infectRate <- S*I*beta

recovRate <- I*gam

rates <- c(infectRate, recovRate)

t.next <- rexp(1, sum(rates)) #time until next event

t.cur <- t.cur+t.next

if(t.cur > t.end){ #end of simulation period

return(c(S,I))

}

#sample the type of next event

decision <- rbinom(1, 1, infectRate/sum(rates))

if(decision == 1) { #infection

S <- S - 1; I <- I + 1

} else { #recovery

I <- I - 1

}

}

return(-99) #error code for testing

}

#run simulation once with error catch

sim.once <- function(t.end, S, I, beta, gam, maxEvents = 99999999){

res = -99 # error catch

while(res[1] == -99){

res <- simulateSIR(t.end, S, I, beta, gam, maxEvents) }

return(res)

}

getTrans.MC <- function(N, t.end, S, I, beta, gam){

result <- replicate(N, sim.once(t.end, S, I, beta, gam))

#make big enough to account for all events: count end states

trans.count <- matrix(0, S+I,S+I)

for(i in 1:N){

id <- result[,i]+1

#indices in the resulting transition count: ie if you end at (1,1),

you add a count to the (2,2) entry of the count matrix, etc

trans.count[id[1], id[2]] = trans.count[id[1], id[2]] + 1

}

6

tpm <- trans.count/sum(trans.count)

return(tpm)

}

Given the functions above for different ways to compute transition probabilities as
well as Monte Carlo simulation, we are ready to run the code and look at comparisons.
Below, we set S0 = 140, I0 = 10 and look at a time interval of length .5, but these are
parameters we can explore when deciding what kind of results/comparisons to report.

#Choose initial S and I population here

S <- 140

I <- 10

beta = .5/(S+I)

gamma = .1

N <- 1000 #number of MC realizations: increase N in practice

t.end <- .5 #time interval length

#monte carlo estimate and standard error

tpm.MC <- getTrans.MC(N, t.end, S, I, beta, gamma)

sd.MC <- sqrt((tpm.MC)*(1 - tpm.MC)/N)

now, calculate probabilities using generating functions

gridLength = 256

t1 <- system.time(

tpm1 <- getTransProbsODE(t.end, gridLength,

beta, gamma, S, I)[1:(S+I),1:(S+I)])

t2 <- system.time(

tpm2 <- getTransProbsClosed(t.end, gridLength,

beta, gamma, S, I)[1:(S+I),1:(S+I)])

t1

user system elapsed

0.458 0.021 0.496

t2

user system elapsed

4.044 0.206 4.345

According to timing results, it looks like just using the Fourier transforms on a grid
of ODE solutions is faster, but recall in practice we only ever need to evaluate one closed

7

form entry at a time rather than ever used the function getTransProbClosed. We will
only need to use the function TransProb_mnkl.

Next, we can take a look at accuracy:

total errors:

sum(abs(tpm1 - tpm2)) # compare the two methods

[1] 2.731309e-08

sum(abs(tpm1 - tpm.MC)) #compare to true model Monte Carlo probabilities

[1] 0.1828151

In terms of total absolute error, we see that the closed form probabilities check out
with the ODE method which we know should work properly. In terms of assessing
how well we capture the true SIR model we are approximating, there is clearly error
accrued: let’s marginalize over susceptibles so that it’s easier to compare than looking
at every individual transition probability. We can also explore other ways to quantify
or visualize the errors, and of course will eventually also compare with the continued
fraction method.

Below, the purple crosses are probabilities computed using our method, and the blue
points with confidence intervals are from Monte Carlo. We can try different settings
to see when these are close and when they break down. When incorporated within a
M-H sampler, it will be interesting to see how any discrepancies actually affect the final
posterior estimates over parameters.

#marginalize over susceptibles: c

infectiveProbs.MC <- colSums(tpm.MC)

infectiveSD.MC <- sqrt((infectiveProbs.MC)*(1 - infectiveProbs.MC)/(N))

#check that this SD is correct...

lower <- infectiveProbs.MC - infectiveSD.MC*1.96

upper <- infectiveProbs.MC + infectiveSD.MC*1.96

infectiveProbs.FFT <- round(colSums(tpm2),4)

require(plotrix)

Loading required package: plotrix

plot(seq(S + I), xlim = c(0,50), infectiveProbs.FFT, pch = 3,

col = 'purple', main = "Probabilities of ending with x infectives")

plotCI(seq(S + I), xlim = c(0,50), infectiveProbs.MC, pch = 16,

col = 4, ui = upper, li = lower, add=TRUE)

#marginalize other way:

suscepProbs.MC <- rowSums(tpm.MC)

suscepSD.MC <- sqrt((suscepProbs.MC)*(1 - suscepProbs.MC)/(N))

8

lower <- suscepProbs.MC - suscepSD.MC*1.96

upper <- suscepProbs.MC + suscepSD.MC*1.96

suscepProbs.FFT <- round(rowSums(tpm2),4)

plot(seq(S+I), xlim = c(110,160), suscepProbs.FFT, pch = 3,

col = 'purple', main = "Probabilities of ending with x susceptibles")

plotCI(seq(S+I), xlim = c(110,160), suscepProbs.MC, pch = 16,

col = 4, ui = upper, li = lower, add=TRUE)

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Probabilities of ending with x infectives

seq(S + I)

in
fe

ct
iv

eP
ro

bs
.F

F
T

9

110 120 130 140 150 160

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Probabilities of ending with x susceptibles

seq(S + I)

su
sc

ep
P

ro
bs

.F
F

T

Finally, let’s begin comparisons with the continued fraction method. We begin by
importing MultiBD and defining parameters of the SIR model. We choose rates similar
to the Eyam example for now, and begin with a small population of 100 susceptibles and
15 infectives. There seems to be some computational bug when testing for larger cases...
will look into this soon. We compute a matrix containing transition probabilities using
all three methods below:

library(MultiBD)

tList <- c(.1, .2, .25, .3 ,.35, .4, .5, .6, .7, .8, .9, 1)

gridLength = 128

a0 = 110 # S_0

b0 = 15 # I_0

10

A = 0

B = gridLength - 1

alpha = 3.2 #3.2 #this is death rate

beta = .025 #.019 #this is transition or infection rates

nSim = 4000 #number of MC simulations

brates1=function(a,b){0}

drates1=function(a,b){0}

brates2=function(a,b){0}

drates2=function(a,b){alpha*b}

trans=function(a,b){beta*a*b}

Having specified the parameters, list of times, and rates, let’s compute probabilities
using each method (the following takes a while to run because of the Monte Carlo sim-
ulations):

#indexed by time, type of computation, and dimensions of the tpm

tpmArray <- array(NA, dim = c(length(tList), 3, 52, 25)

) #store a subset of transition probabilities

time1 <- rep(0, length(tList)); time2 <- rep(0, length(tList))

for(i in 1:length(tList)){

t.end <- tList[i]

time1[i] <- system.time(

tpm.Closed <- getTransProbsClosed(t.end, gridLength,

beta, alpha, a0, b0))

tpm1 = tpm.Closed[1:(a0+1),] #using 2-type branching approximation

#using continued fractions via MultiBD

time2[i] <- system.time(

tpm2 <- dbd_prob(t.end, a0, b0, drates1, brates2, drates2, trans,

a=A, B))#, computeMode=2))

#MC simulation "ground truth"

tpm.MC <- getTrans.MC(nSim, t.end, a0, b0, beta, alpha)

tpm3 <- tpm.MC[1:(a0+1),]

#store subset of matrices containing about 99 percent of the mass:

tpmArray[i,1,,] <- tpm1[60:(a0+1),1:25]

tpmArray[i,2,,] <- tpm2[60:(a0+1),1:25]

tpmArray[i,3,,] <- tpm3[60:(a0+1),1:25]

}

Next, we can look at measures of similarity: first, we can look at where the largest
entries are located, and then plot the probability mass over regions where most of the
support lies.

11

#for example, look at the ones with t.end = .5

small1 <- tpmArray[5,1,,]

small2 <- tpmArray[5,2,,]

small3 <- tpmArray[5,3,,]

#they comprise most of transition probability mass:

sum(small1); sum(small2); sum(small3)

[1] 0.9993855

[1] 0.9930228

[1] 0.99425

mean errors

mean(abs(small1- small3)) #2-type vs MC

[1] 0.0004178377

mean(abs(small2 - small3)) #Continued Frac vs MC

[1] 0.0001622755

scaled heatmap images to compare tpm visually

par(mfrow=(c(3,1)))

image(small1, main = "Two-type branching approximation")

image(small2, main = "Continued Fraction expansion")

image(small3, main = "Monte Carlo estimates")

12

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Two−type branching approximation

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Continued Fraction expansion

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Monte Carlo estimates

From the heatmap plots above, we see that indeed the continued fraction method
looks like it assigns probability mass to the correct areas, very similar to the contours of
the MC estimates in the bottom panel. The two-type approximation is close but centered
slightly off, as is reflected by the slightly higher mean error and indices of largest values
above the plot as well.

However, for larger time intervals, the two-type approximation is more noticeably far
from the true MC estimates: below shows the heatmaps for t = 1:

par(mfrow=(c(3,1)))

image(tpmArray[12,1,,], main = "Two-type branching approximation")

image(tpmArray[12,2,,], main = "Continued Fraction expansion")

image(tpmArray[12,3,,], main = "Monte Carlo estimates")

13

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Two−type branching approximation

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Continued Fraction expansion

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Monte Carlo estimates

Next, we would like to vary the populations, time intervals, etc, and make some plots
of a few given transition probabilities as these parameters vary. We can compare the 2-
type branching approximation with the continued fraction method and see how closely
each aligns with MC simulation.

library(plotrix)

inds <- t(which(tpmArray[7,2,,] >= sort(tpmArray[7,2,,], decreasing=T)[16],

arr.ind=TRUE))

#ind1 <- sample(52,25, replace=T); ind2 <- sample(25,25,replace=T)

par(mfrow = c(4,4), oma = c(5,4,0,0) + 0.1, mar = c(0,0,1,1) + 0.1)

for(i in 1:16){

plot(tList, tpmArray[,2,inds[1,i], inds[2,i]], pch = 17, col = 'red',

14

ylim = c(0,max(tpmArray[,,inds[1,i], inds[2,i]])),

yaxt = 'n', xlab = "dt")

MCp <- tpmArray[,3,inds[1,i], inds[2,i]] #MC prob

plotCI(tList, MCp, pch = 4, col = 'green',

ui = MCp+1.96*sqrt(MCp*(1-MCp)/nSim),

li <- MCp-1.96*sqrt(MCp*(1-MCp)/nSim), add = TRUE)

points(tList, tpmArray[,1,inds[1,i], inds[2,i]],

col='purple', pch = 16)

}

0.2 0.4 0.6 0.8 1.0

dt

tp
m

A
rr

ay
[,

2,
 in

ds
[1

, i
],

in
ds

[2
, i

]]

0.2 0.4 0.6 0.8 1.0

dt

tp
m

A
rr

ay
[,

2,
 in

ds
[1

, i
],

in
ds

[2
, i

]]

0.2 0.4 0.6 0.8 1.0

dt

tp
m

A
rr

ay
[,

2,
 in

ds
[1

, i
],

in
ds

[2
, i

]]

0.2 0.4 0.6 0.8 1.0

dt

tp
m

A
rr

ay
[,

2,
 in

ds
[1

, i
],

in
ds

[2
, i

]]

0.2 0.4 0.6 0.8 1.0

dt

tp
m

A
rr

ay
[,

2,
 in

ds
[1

, i
],

in
ds

[2
, i

]]

0.2 0.4 0.6 0.8 1.0

dt

tp
m

A
rr

ay
[,

2,
 in

ds
[1

, i
],

in
ds

[2
, i

]]

0.2 0.4 0.6 0.8 1.0

dt

tp
m

A
rr

ay
[,

2,
 in

ds
[1

, i
],

in
ds

[2
, i

]]

0.2 0.4 0.6 0.8 1.0

dt

tp
m

A
rr

ay
[,

2,
 in

ds
[1

, i
],

in
ds

[2
, i

]]

0.2 0.4 0.6 0.8 1.0

dt

tp
m

A
rr

ay
[,

2,
 in

ds
[1

, i
],

in
ds

[2
, i

]]

0.2 0.4 0.6 0.8 1.0

dt

tp
m

A
rr

ay
[,

2,
 in

ds
[1

, i
],

in
ds

[2
, i

]]

0.2 0.4 0.6 0.8 1.0

dt

tp
m

A
rr

ay
[,

2,
 in

ds
[1

, i
],

in
ds

[2
, i

]]

0.2 0.4 0.6 0.8 1.0

dt

tp
m

A
rr

ay
[,

2,
 in

ds
[1

, i
],

in
ds

[2
, i

]]

0.2 0.4 0.6 0.8 1.0

dt

tp
m

A
rr

ay
[,

2,
 in

ds
[1

, i
],

in
ds

[2
, i

]]

0.2 0.4 0.6 0.8 1.0

dt

tp
m

A
rr

ay
[,

2,
 in

ds
[1

, i
],

in
ds

[2
, i

]]

0.2 0.4 0.6 0.8 1.0

dt

tp
m

A
rr

ay
[,

2,
 in

ds
[1

, i
],

in
ds

[2
, i

]]

0.2 0.4 0.6 0.8 1.0

dt

tp
m

A
rr

ay
[,

2,
 in

ds
[1

, i
],

in
ds

[2
, i

]]

Let’s repeat some of the heatmap images to check the multibd package with larger
populations:

15

tList <- c(.5, 1)

gridLength = 256

a0 = 235 # S_0

b0 = 15 # I_0

A = 0

B = gridLength - 1

alpha = 3.2 #3.2 #this is death rate

beta = .025 #.019 #this is transition or infection rates

nSim <- 10000

#store a subset of transition probabilities

tpmArray <- array(NA, dim= c(length(tList),2, (a0+1), 240))

time1 <- rep(0, length(tList))

for(i in 1:length(tList)){

t.end <- tList[i]

time1 <- system.time(

tpm2 <- dbd_prob(t.end, a0, b0, drates1, brates2, drates2, trans,

a=A, B))#, computeMode=2))

#MC simulation "ground truth"

tpm.MC <- getTrans.MC(nSim, t.end, a0, b0, beta, alpha)

tpm3 <- tpm.MC[1:(a0+1),]

#store subset of matrices containing about 99 percent of the mass:

tpmArray[i,1,,] <- tpm2[1:(a0+1),1:60]

tpmArray[i,2,,] <- tpm3[1:(a0+1),1:60]

}

The below plots are for t = .5, 1 respectively:

par(mfrow = c(2,1))

image(tpmArray[1,1,,1:60], main = "Continued Fraction approximation, t=.5")

image(tpmArray[1,2,,1:60], main = "Monte Carlo estimates")

par(mfrow = c(2,1))

image(tpmArray[2,1,,1:60], main = "Continued Fraction approximation, t=1")

image(tpmArray[2,2,,1:60], main = "Monte Carlo estimates")

16

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Continued Fraction approximation, t=.5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Monte Carlo estimates

17

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Continued Fraction approximation, t=1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Monte Carlo estimates

18

	1 SIR model and proposed branching approximation
	2 R code

